

SUGGESTED SOLUTION

CA INTERMEDIATE

SUBJECT- COSTING

Test Code – CIM 8510

BRANCH - () (Date :)

Head Office : Shraddha, 3rd Floor, Near Chinai College, Andheri (E), Mumbai – 69. Tel : (022) 26836666

ANSWER - 1

ANSWER – A

(1) A = Annual usage of parts = Monthly demand for monitors × 4 parts × 12 months

= 2,000 monitors × 4 parts × 12 months = 96,000 units

O = Ordering cost per order = Rs. 1,000 / - per order

 $C_1 = Cost per part = Rs. 350/-$

_iC₁ = Inventory carrying cost per unit per annum

= 20% × Rs. 350 = Rs. 70 /- per unit, per annum

Economic order quantity (EOQ) :

E.O.Q. =
$$\sqrt{\frac{2AO}{iC_1}} = \sqrt{\frac{2 \times 96,000 \text{ units } \times Rs.1,000}{Rs.70}}$$

= 1,656 parts (approx.)

The supplier is willing to supply 30,000 units at a discount of 5%, therefore cost of each part shall be Rs. 350 – 5% of 350 = Rs. 332.5

Total cost (when order size is 30,000 units) :

= Cost of 96,000 units + Ordering cost + Carrying cost.

= (96,000 units × Rs. 332.50) + $\left(\frac{96,000 \text{ units}}{30,000 \text{ units}} \times Rs. 1,000\right)$ + $\frac{1}{2}$ (30,000 units × 20% × Rs. 332.50)

= Rs. 3,19,20,000 + Rs. 3,200* + Rs. 9,97,500 = Rs. 3,29,20,700

Total cost (when order size is 1,656 units) :

= (96,000 units × Rs. 350) +
$$\left(\frac{96,000 \text{ units}}{1,656 \text{ units}} \times Rs. 1,000\right)$$
 + $\frac{1}{2}$ (1,656 units × 20% × Rs. 350)

= Rs. 3,36,00,000 + Rs. 57,970* + Rs. 57,960 = Rs. 3,37,15,930

Since, the total cost under the supply of 30,000 units with 5% discount is lower than that when order size is 1,656 units, therefore the offer should be accepted.

Note : While accepting this offer consideration of capital blocked on order size of 30,000 units has been ignored.

*Order size can also be taken in absolute figure.

(3 MARKS)

(2) Reorder level

= Maximum consumption × Maximum re - order period

= 710 units × 5 weeks = 3,550 units

(1 MARK)

(3) Maximum level of stock

= Re – order level + Reorder quantity – (Min. usage × Min. reorder period)

= 3,550 units + 1,656 units – (140 units × 3 weeks) = 4,786 units.

(1 MARK)

(1 MARK)

(4) Minimum level of stock

Re – order level – Normal usage × Average reorder period

= 3,550 units – (425 units × 4 weeks) = 1,850 units.

ANSWER – B

Calculation of :

1. Time saved and wages :

Workmen	Α	В
Standard time (hrs.)	40	40
Actual time taken (hrs.)	32	30
Time saved (hrs.)	8	10
Wages paid @ Rs. × per hr. (Rs.)	32x	30x

(1.5 MARKS)

2. Bonus Plan :

	Halsey	Rowan
Time saved (hrs.)	8	10
Bonus (Rs.)	4x	7.5x
	$\left[\frac{8 hrs \times Rs. x}{2}\right]$	$\left[\frac{10 \ hrs}{40 \ hrs} \times 30 \ hrs \times Rs \ x\right]$

(1 MARK)

3. Total wages :

Workman A : 32x + 4x = Rs. 36x

Workman B : 30x + 7.5x = Rs. 37.5x

Statement of factory cost of the job

(i)

Workmen	A (Rs.)	B (Rs.)
Material cost (assumed)	У	Y
Wages (shown above)	36x	37.5x
Works overhead	240	225
Factory cost (given)	2,600	2,600

The above relations can be written as follows :

36x + y + 240 = 2,600

37.5x + y + 225 = 2,600 (ii)

Subtracting (i) from (ii) we get

1.5x - 15 = 0

Or, 1.5x = 15

Or, x = Rs. 10 per hour

On substituting the value of x in (i) we get y = Rs. 2,000

Hence, the wage rate per hour is Rs. 10 and the cost of raw material is Rs. 2,000 on the job.

Statement of element of cost

Workmen	A (Rs.)	B (Rs.)
Material cost	2,000	2,000
Wages (@ 10 per hour)	360	375
Works overhead	240	225
Factory cost	2,600	2,600

ANSWER - 2

ANSWER – A

(i) Calculation of Economic Order Quantity :

$$EOQ = \sqrt{\frac{2 \times A \times O}{Ci}} = \sqrt{\frac{2 \times (60,000 \ packs \times 12 \ months) \times Rs.240}{Rs.228 \times 10\%}}$$

= 3,893.3 packs or 3,893 packs.

(ii) Number of orders per year

 $\frac{Annual requirements}{E.O.Q.} = \frac{7,20,000 \ packs}{3,893 \ packs} = 184.9 \text{ or } 185 \text{ orders a year}$

(iii) Ordering and storage costs

	Rs.
Ordering costs : - 185 orders × Rs. 240	44,400.00
Storage Cost : - $\frac{1}{2}$ (3,893 packs \times 10% of Rs. 228)	44,380.20
Total cost of ordering & storage	88,780.20

(3*1 = 3 MARKS)

(iv) Timing of next order

(a) Day's requirement served by each order.

Number of days requirements = $\frac{No.of \ working \ days}{No.of \ order \ in \ a \ year} = \frac{360 \ days}{185 \ orders} = 1.94 \ days \ supply.$

This implies that each order of 3,893 packs supplies for requirements of 1.94 days only.

(b) Days requirement covered by inventory

$$= \frac{Units in inventory}{Economic order quantity} \times (Day's requirement served by an order)$$

 $\therefore \frac{10,033 \ pakcs}{3,893 \ packs} \times 1.94 \ days = 5 \ days \ requirement$

(3.5 MARKS)

(c) Time interval for placing next order
Inventory left for day's requirement – Average lead time of delivery
5 days – 5 days = 0 days
This means that next order for the replenishment of supplies has to be placed immediately.

ANSWER – B

(a) Labour turnover rate :

It comprises of computation of labour turnover by using following methods :

(i) Replacement Method : Labour turnover rate = $\frac{No.of workers replaced}{Average number of workers} \times 100$

$$= \frac{75}{1,000} \times 100 = 7.5\%$$

Equivalent Annual Turnover Rate = $\frac{7.5 \times 365}{31} = 88.31\%$

(1 MARK)

(ii) Separation Method :

Labour turnover rate = $\frac{No.of \ workers \ left+No.of \ workers \ discharged}{Average \ number \ of \ workers} \times 100$

$$=\frac{(40+60)}{(900+1100) \div 2} \times 100 = \frac{100}{1,000} \times 100 = 10\%$$

Equivalent Annual Turnover Rate = $\frac{10 \times 365}{31} = 117.74\%$

(1 MARK)

(iii) Flux Method :

Labour turnover rate = $\frac{No.of \ separations + No.of \ accessions}{Average \ number \ of \ workers} \times 100$

$$=\frac{(100+300)}{(900+1,100)\div 2}\times 100 = \frac{400}{1,000}\times 100 = 40\%$$

Equivalent Annual Turnover Rate = $\frac{40 \times 365}{31} = 470.97\%$

(2 MARKS)

(iii) Flux Method :

Labour turnover rate = $\frac{No.of \ separation + No. \ of \ replaced}{Average \ number \ of \ workers} \times 100$

$$\frac{100+75}{1000} \times 100 = 17.5\%$$

Equivalent Annual Turnover Rate = $\frac{17.5 \times 365}{31}$ = 206.05%

ANSWER - 3

ANSWER – A

(i) Calculation of Economic Order Quantity

$$EOQ = \sqrt{\frac{2AO}{C}} = \sqrt{\frac{2 \times 12,000 \text{ units } \times Rs.1,800}{Rs.640 \times 18.75 / 100}} = 600 \text{ units}$$

(1 MARK)

(ii) Evaluation of Profitability of Different Options of Order Quantity

When EOQ is ordered

	(Rs.)
Purchase Cost (12,000 units × Rs. 640)	76,80,000
Ordering Cost $\left[\frac{A}{Q} \times O - (12,000 \text{ units } / 600 \text{ units}) \times \text{Rs. } 1,800\right]$	36,000
Carrying Cost $\left(\frac{Q}{2} \times C \times i - 600 \text{ units } \times \text{Rs. 640 } \times \frac{1}{2} \times 18.75/100\right)$	36,000
Total Cost	77,52,000

(2 MARKS)

(b) When Quantity Discount is accepted

	(Rs.)
Purchase Cost (12,000 units × Rs. 608)	72,96,000
Ordering Cost $\left[\frac{A}{Q} \times O (12,000 units/3000 units) \times Rs. 1,800\right]$	7,200
Carrying Cost $\left[\frac{Q}{2} \times C \times i(3,000 \text{ units } \times Rs.608 \times \frac{1}{2} \times 18.75/100)\right]$	1,71,000
Total Cost	74,74,200

Advise - The total cost of inventory is higher if EOQ is adopted. If M/s. X Private Limited gets a discount of 5% on the purchases of "SKY BLUE" (if order size is 3,000 components at a time), there will be financial benefit of Rs. 2,77,800 (77,52,000 – 74,74,200). However, order size of big quantity will increase volume of average inventory to 5 times. There may be risk of shrinkage, pilferage and obsolescence etc., of inventory due to increase in the average volume of inventory holding. This aspect also has to be taken into consideration before opting the discount offer and taking final decision.

(2 MARKS)

ANSWER – B

Output by experienced workers in 50,000 hours = $\frac{50,000}{10}$ = 5,000 units

 \therefore Output by new recruits = 60% of 5,000 = 3,000 units

Loss of output = 5,000 - 3,000 = 2,000 units

Total loss of output = Due to delay recruitment + Due to inexperience

= 10,000 + 2,000 = 12,000 units

Contribution per unit = 20% of Rs. 180 = Rs. 36

Total contribution lost = Rs. $36 \times 12,000$ units = Rs. 4,32,000

Cost of repairing defective units = 3,000 units \times 0.2 \times Rs. 25 = Rs. 15,000

Profit forgone due to labour turnover

	Rs.
Loss of Contribution	4,32,000
Cost of repairing defective units	15,000
Recruitment cost	1,56,340
Training cost	1,13,180
Settlement cost of workers leaving	1,83,480
Profit forgone in 2017 – 18	9,00,000

(5 MARKS)

ANSWER - 4

(i) Computation of wages of each worker under guaranteed hourly rate basis

Worker	Actual hours	Actual hours Hourly wage rate	
	Worked(Hours)	(Rs.)	
I	380	40	15,200
II	100	50	5,000
III	540	60	32,400

(2 MARKS)

(ii) Computation of Wages of each worker under piece work earning basis

Product	Piece	Worl	ker – I	Work	er – II	Work	er – III
	rate per unit (Rs.)	Units	Wages (Rs.)	Units	Wages (Rs.)	Units	Wages (Rs.)
А	15	210	3,150	-	-	600	9,000
В	20	360	7,200	-	-	1,350	27,000
С	30	460	13,800	250	7,500	-	-
Total			24,150		7,500		36,000

Since each worker's earnings are more than 50% of basic pay. Therefore, worker – I, II and III will be paid the wages as computed i.e. Rs. 24,150, Rs. 7,500 and Rs. 36,000 respectively.

Working Notes :

1. Piece rate per unit

Product	Standard time per unit in minute	Piece rate each minute (Rs.)	Piece rate per unit (Rs.)
А	15	1	15
В	20	1	20
С	30	1	30

2. Time allowed to each worker

Worker	Product – A	Product – B	Product – C	Total Time
				(Hours)
I	210 units ×	360 units $ imes$	460 units × 30	24,150 / 60 =
	15 = 3,150	20 = 7,200	= 13,800	402.50
П	-	-	250 units × 30	7,500/ 60 = 125
			= 7,500	
	600 units ×	1,350 units ×	-	36,000/60 = 600
	15 = 9,000	20 = 27,000		

(4 MARKS)

(iii) Computation of wages of each worker under Premium bonus basis (where each worker receives bonus based on Rowan Scheme)

Worker	Time Allowed (Hr.)	Time Taken (Hr.)	Time Saved (Hr.)	Wage Rate per hour(Rs.)	Earnings (Rs.)	Bonus	Total Earning (Rs.)
I	402.5	380	22.5	40	15,200	850	16,050
II	125	100	25	50	5,000	1,000	6,000
111	600	540	60	60	32,400	3,240	35,640

- * $\frac{\text{Time Taken}}{\text{Time Allowed}}$ × Time Saved × WageRate
- Worker I = $\frac{380}{402.5}$ × 22.5 × 40 = 850

Worker – II =
$$\frac{100}{125} \times 25 \times 50 = 1,000$$

Worker – III =
$$\frac{540}{600} \times 60 \times 60 = 3,240$$

(4 MARKS)

ANSWER – 5

Workings

Basic wage rate	:	₹	t 100 per hour
Overtime wage rate before and after working hours	s :	₹	₹ 100 × 175% = ₹ 175 per hour
Overtime wage rate for Sundays and holidays	:	₹	₹ 100 × 225% = ₹ 225 per hour

Computation of average inflated wage rate (including overtime premium):

Particulars	Amount (₹)
Annual wages for the previous year for normal time (1,00,000 hrs. × ₹100)	1,00,00,000
Wages for overtime before and after working hours (20,000 hrs. × ₹ 175)	35,00,000
Wages for overtime on Sundays and holidays (5,000 hrs. × ₹ 225)	11,25,000
Total wages for 1,25,000 hrs.	1,46,25,000

Average inflated wage rate = $\frac{1,46,25,000}{1,25,000} = 117$

(5 MARKS)

(a) Where overtime is worked regularly as a policy due to workers' shortage:

The overtime premium is treated as a part of employee cost and job is charged at an inflated wage rate. Hence, employee cost chargeable to job Z

= Total hours × Inflated wage rate = 1,125 hrs. × ₹ 117 = ₹ **1,31,625**

(b) Where overtime is worked irregularly to meet the requirements of production:

Basic wage rate is charged to the job and overtime premium is charged to factory overheads as under:

Employee cost chargeable to Job Z: 1,125 hours @ ₹100 per hour = ₹ 1,12,500

Factory overhead: {100 hrs. × ₹ (175 - 100)} + {25 hrs. × ₹ (225 - 100)} = {₹7,500 + ₹3,125} = ₹ **10,625**

(c) Where overtime is worked at the request of the customer, overtime premium is also charged to the job as under:

	Total		<u>1,23,125</u>
	25 hrs. @ ₹ (225 – 100)	=	3,125
Overtime premium	100 hrs. @ ₹ (175 – 100)	=	7,500
Job Z Employee cost	1,125 hrs. @ ₹ 100	=	1,12,500

(3 MARKS)